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Abstract An extreme point property of optimal solutions of general concave program-
ming problems is established that generalizes both Du-Hwang’s minimax theorem and its
continuous version by Du and Pardalos.
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1 Introduction

A long standing conjecture of Gilbert and Pollak about the Steiner ratio was finally proved
in 1990 by Du and Hwang [2] by using the following special “minimax theorem”:

Let C be a polytope in R
n defined by the inequalities 〈a j , x〉 ≥ b j , j = 1, . . . , k, and

let gi (x), i = 1 . . . , m, be continuous concave functions on R
n. Then an optimal solution of

the problem

min{ max
i=1,...,m

gi (x)| x ∈ C} (1)

exists which is a DH-point, i.e., a point x∗ such that if J (x) := { j | 〈a j , x〉 = b j }, M(x) :=
{i | gi (x) = maxi ′=1,...,m gi ′(x)} then there is no x ∈ C with J (x) ⊃ J (x∗), M(x) ⊃ M(x∗)
and |J (x)| + |M(x)| > |J (x∗)| + |M(x∗)|.

Subsequently, a continuous version of this proposition is established [3] that uses, however,
a slightly modified (and weaker) concept of DH-point, and so does not actually generalize
Du-Hwang’s proposition but only a weaker version of it. The situation looks somewhat
intriguing, because, despite its name and the fact that it deals with a property of a minimax
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problem, Du-Hwang’s proposition has little to do with classical minimax theory as has been
developed through the years since the work of von Neumann in 1928 (see e.g. [9]).

In fact, DH-property is rather related to the well known property that the minimum of a
concave function over a compact convex set is attained at some extreme point of this compact
convex set. The purpose of the present note is to show that, more precisely, DH-property is
merely a special case of an extreme point property of concave minimization problems whose
feasible set is a compact set formed by the solutions of a finite or infinite system of convex
and reverse convex inequalities [8].

First we consider, in Sect. 2, the most important case when the reverse convex inequal-
ities have the form g(x, y) ≥ 0, y ∈ D, with g(x, y) concave functions in x for every
fixed y ∈ D. The class of such problems, to be referred to as general concave programming
problems (GCP), includes essentially the class of DC optimization problems introduced and
studied extensively during the last two decades (see e.g. [7,8]). In this section we state and
prove the basic property of (GCP) that an optimal solution of it always exists which is an
extreme point of the compact feasible set. Next, in Sect. 3, we introduce a concept of DH-
point of a compact set which generalizes the original concept by Du-Hwang, and, under
the assumption that |D| (number of reverse convex constraints) is finite, we prove that any
extreme point of the feasible set of (GCP) is a DH-point. Finally, in Sect. 4, we prove the
existence of an optimal DH-point for any (GCP), where D is an arbitrary compact subset of
a metric space Y and g(x, y) is a continuous function on C × Y , quasiconcave in x for every
fixed y. As prerequisite, we assume that the reader is familiar with properties of extremal sets
and extreme points of compact sets which can be found e.g. in [1,2], or also in [8], especially
for faces and extreme points of compact convex sets.

2 General concave programming

By general concave programming problems we mean the class of optimization problems of
the form

min{ f (x)| max
y∈D

g(x, y) ≤ 0, x ∈ C}, (GCP)

where C is a nonempty compact convex set in R
n, f (x) a continuous concave function on

C, D a compact subset of a metric space Y , and g(x, y) a continuous concave function in
x for fixed y ∈ D. A subclass of this class of problems is constituted by DC optimization
problems over compact convex sets, since these, as shown e.g. in [8], can always be reduced
to the canonical form

min{ f (x)| g(x) ≤ 0, x ∈ C},
where f (x), g(x) are concave functions and C is a compact convex set.

On the other hand, when D = {1, . . . , m} and gi (x) := g(x, i), i = 1, . . . , m, as in
the problem (1), the function g(x) = maxi=1,...,m gi (x) is a DC function, namely: g(x) =
u(x) − v(x), where

u(x) :=
m∑

i=1

gi (x), v(x) := min
k=1,...,m

∑

i 	=k

gi (x)

123



J Glob Optim (2009) 43:407–413 409

are concave functions (see e.g. [8]). So in this case (GCP) can be written as the DC optimi-
zation problem

min{ f (x)| u(x) − v(x) ≤ 0, x ∈ C}. (2)

In particular, when D = ∅, (GCP) is reduced to the classical concave programming problem
[8]:

min{ f (x)| x ∈ C}. (CCP)

It is well known that in the latter particular case an optimal solution x∗ always exists which
is an extreme point of the compact convex set C . To generalize this property let us recall
some definitions (see e.g. [1,2]).

A subset S of a compact set K is called an extremal set of K if for any x ′, x ′′ ∈ K ,
whenever x = αx ′ + (1 − α)x ′′ ∈ S for some α ∈ (0, 1) then x ′, x ′′ ∈ S. An extremal set of
a compact convex set is also called a face of it. An extremal set which is a singleton is called
an extreme point. The following result is known (see e.g., [5], Sect. 13A).

Theorem 1 The minimum of a concave function f (x) over a compact set K is achieved at
an extreme point of K .

Proof Let coK denote the closed convex hull of K . It is well known that the minimum of
f (x) over coK is achieved at an extreme point x∗ of coK , and that every extreme point of
coK belongs to K , hence is an extreme point of K (Krein-Milman theorem, or Proposition
1.17 in [8]). The result follows, by observing that if x∗ is an extreme point of coK which is
a minimizer of f (x) over coK then x∗ is an extreme point of K and a minimizer of f (x)

over K .
An alternative proof of this Theorem can also be found in [5]. ��
Letting

K = {x ∈ R
n | max

y∈D
g(x, y) ≤ 0, x ∈ C}, (3)

we thus obtain:

Corollary 1 At least an optimal solution of (GCP) is an extreme point of of the feasible set.

3 Extreme point and DH-point — case |D| < +∞

Given the above defined set K , for each x ∈ C let M(x) = {y ∈ D| g(x, y) = 0} and denote
by S(x) the smallest face of C that contains x . As is well known (see e.g., [8], Corollary
1.11), if x ′ ∈ S(x) \ riS(x) then S(x ′) ⊂ S(x), and S(x) \ S(x ′) 	= ∅. In the case C is a
polytope, e.g. C = {x | 〈a j , x〉 ≥ b j , j = 1, . . . , k}, if J (x) = { j | 〈a j , x〉 = b j } then
clearly for any x ′ ∈ S(x) : S(x) \ S(x ′) 	= ∅ if and only if |J (x ′)| > |J (x)|.

A point x∗ ∈ K is called a DH-point of K if there is no x ∈ S(x∗) ∩ K such that
M(x∗) ⊂ M(x) and: either x /∈ riS(x∗) or M(x) \ M(x∗) 	= ∅. This condition amounts to
requiring that there is no x ∈ K such that

S(x) ⊂ S(x∗), M(x∗) ⊂ M(x), and (S(x∗) \ S(x)) ∪ (M(x) \ M(x∗)) 	= ∅,

where we write A ∪ B 	= ∅ to mean that at least one of the two sets A, B is nonempty. It is
easily seen that a DH-point for problem (1) as defined in [3] is nothing but a DH-point of the
set {x ∈ Rn | maxi=1,...,m gi (x) ≤ 0, x ∈ C} in our definition.
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Theorem 2 If |D| is finite, any extreme point x∗ of K is a DH-point of K .

Proof Let x∗ be an extreme point of K and suppose there is x̂ ∈ S(x∗) ∩ K such that
M(x∗) ⊂ M(x̂) and (S(x∗)\ S(x̂))∪ (M(x̂)\ M(x∗)) 	= ∅. Then x̂ 	= x∗, and since S(x∗) is
the smallest face of C containing x∗, if a point xλ is such that x∗ = (1 − λ)xλ + λx̂ ∈ S(x∗)
then xλ ∈ S(x∗) for all λ > 0 small enough. For every y ∈ M(x∗) ⊂ M(x̂), by concavity
of g(., y), we have 0 = g(x∗, y) ≥ (1 − λ)g(xλ, y) + λg(x̂, y) = (1 − λ)g(xλ, y), so
g(xλ, y) ≤ 0 ∀ λ > 0. On the other hand, if y ∈ D \ M(x∗) then g(x∗, y) < 0, hence, noting
that the function x �→ maxy∈D\M(x∗) g(x, y) is continuous (because D is finite), we have
maxy∈\M(x∗) g(xλ, y) < 0 for small enoughλ > 0. For these values ofλ, maxy∈D g(xλ, y) ≤
0, i.e., xλ ∈ K , conflicting with x∗ being an extreme point. Therefore, x∗ must be a DH-
point. ��
Corollary 2 If (GCP) has only finitely many nonconvex constraints, at least an optimal
solution of it is achieved at a DH-point of the feasible set.

Proof This follows from Theorem 2 and Corollary 1. ��
The minimax problem (1) considered in Du-Hwang [2] is a special case of (GCP), since

it can be written as

min{t | max
i=1,...,m

gi (x) − t ≤ 0, x ∈ C}. (4)

More generally, if g(x) := maxy∈D g(x, y), where D is an arbitrary set, the problem
min{g(x)| x ∈ C} is equivalent to the special (GCP):

min{t | max
y∈D

g(x, y) ≤ t, x ∈ C}. (5)

Lemma 1 A point (x∗, g(x∗)) with x∗ ∈ C is a DH-point of the set H = {(x, t)| maxy∈D

g(x, y) ≤ t, x ∈ C} if and only if there is no x ∈ S(x∗) such that M(x) ⊃ M(x∗) and
|(S(x∗)\ S(x))|+ |M(x)\ M(x∗))| > 0, where M(x) := {y ∈ D| g(x, y) = g(x)}. In other
words, (x∗, g(x∗)) is a DH-point of the set H = {(x, t)| maxy∈D g(x, y) ≤ t, x ∈ C} if
and only if x∗ is a DH-point of the set K = {x ∈ C | maxy∈D g(x, y) ≤ g(x)}.
Proof Clearly (x∗, g(x∗)) ∈ H . For (x, t) ∈ H , since t ≥ g(x) := maxy∈D g(x, y),
we have g(x, y) − t = 0 ⇔ g(x, y) ≥ g(x) ⇔ g(x, y) = g(x), so M(x, t) := {y ∈
D| g(x, y) = t} = M(x). Hence, (x∗, g(x∗)) is a DH-point of H if and only if there is no
x ∈ S(x∗), such that M(x) ⊃ M(x∗) and (S(x∗) \ S(x)) ∪ (M(x) \ M(x∗)) 	= ∅. ��

Since, by Corollary 2, an optimal solution (x∗, g(x∗)) of problem (4) exists which is a
DH-point of the set H = {(x, t)| maxi∈I [gi (x) − t] ≤ 0, x ∈ C}, we obtain from Lemma
1 Du-Hwang’s result mentioned in the Introduction:

Corollary 3 (Du-Hwang [3]) If |D| < +∞ and g(x, y), y ∈ D, are concave functions, the
minimum of g(x) := maxy∈D g(x, y) over a compact convex set C is achieved at a DH-point
x∗ of the set K := {x ∈ C | maxy∈D g(x, y) ≤ g(x)}.

Thus, Du-Hwang’s “minimax theorem” is merely a consequence of Corollary 2 and
Lemma 1.

Remark 1 As we saw, when D = ∅, (GCP) reduces to the classical concave programming
problem (CCP). If C = {x ∈ R

n | maxz∈Z h(x, z) ≤ 0}, where h(x, z) is a continuous convex
function in x for every fixed z, the problem can be written as

min{ f (x)| max
z∈Z

h(x, z) ≤ 0}.

123



J Glob Optim (2009) 43:407–413 411

Letting N (x) = {z ∈ Z | h(x, z) = 0}, it is not hard to see that for any x∗ ∈ C the set
S(x∗) = {x | h(x, z) = 0 ∀z ∈ N (x∗)} is an extremal set of C . Therefore, x∗ is an extreme
point of C if and only if S(x∗) is a singleton, i.e., if and only if there is no x such that
N (x∗) ⊂ N (x) and N (x) \ N (x∗) 	= ∅. In other words, x∗ is an extreme point of a compact
convex set C if and only if it is a DH-point of this set. Based on this trivial property of extreme
points of compact convex sets, an alternative proof of Corollary 2 is to reduce problem (1)
to the following (CCP):

min{u(x) − t | min
i∈I

vi (x) ≥ t, c ∈ C}, (6)

where u(x) = ∑
i∈I gi (x), v(x) = mini∈I vi (x), and vi (x) := ∑

k∈I\{i} gk(x) are concave
functions (see (2)). In fact, an optimal solution (x∗, v(x∗)) of (6) exists which is an extreme
point of the compact convex set L := {(x, t)| mini∈I vi (x) ≥ t, x ∈ C}. By the above
mentioned trivial property, (x∗, v(x∗)) is a DH-point of L , i.e., there is no x ∈ S(x∗) such
that {i ∈ I | vi (x) = v(x)} \ {i ∈ I | vi (x∗) = v(x∗)} 	= ∅. Du-Hwang’s result then follows
by observing that vi (x) = v(x) ⇔ gi (x) = g(x). ��

4 Extreme point and DH-point — general case

The proof of Theorem 2 is based on the continuity of the function x �→ maxy∈D\M(x∗) g(x, y).
Since this continuity is obvious only when D is finite, the proof does not carry over to the
case |D| = +∞. To extend Theorem 2 to the case where D may not be finite we need a more
involved proof.

In problem (GCP) assume now that the objective function f (x) is quasiconcave and
(*) g(x, y) is quasiconcave in x for every fixed y and continuous jointly in x and y on the

product topology of C × D.

Corollary 2 can be generalized as follows.

Theorem 3 Under the stated assumptions, at least an optimal solution of (GCP) is a DH-
point of its feasible set.

Proof Let α be the optimal value of (GCP). With ω ∈ Y \ D, define z = (x, t), g(x, ω) =
f (x) − α, D′ = D ∪ {ω}, g̃(x) = maxy∈D′ g(x, y), T = max{g(x, y)| x ∈ C, y ∈ D′},
and consider the problem min{g̃(x)| x ∈ C}, or, equivalently,

min{t | g̃(x) := max
y∈D′ g(x, y) ≤ t, (x, t) ∈ C × [0, T ]}. (Q)

By Theorem 1, there exists an extreme point x∗ of K which is an optimal solution of (GCP).
Clearly z∗ := (x∗, 0) is a feasible solution of (Q), while for any feasible solution z = (x, t)
of (Q) one has t ≥ 0, so 0 is the optimal value, and z∗ = (x∗, 0) an optimal solution, of (Q).

Let

H := {z = (x, t)| max
y∈D′ g(x, y) ≤ t, (x, t) ∈ C × [0, T ]}.

Define on H a relation � as follows:

z = (x, t), z′ = (x ′, t ′) ∈ H, z � z′ ⇔ {S(x ′) ⊂ S(x) and M(z) ⊂ M(z′)},
where S(x) is, as previously, the smallest face of C containing x , while M(z) = {y ∈
D′| g(x, y) = t}. For (x, t) ∈ H , we have t ≥ maxy∈D′ g(x, y), so g(x, y) = t ⇔
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g(x, y) = g̃(x), hence M(z) = {y ∈ D′| g(x, y) = g̃(x)}. It is plain to verify that the rela-
tion � is reflexive and transitive, i.e., is a partial ordering on H . Let Z∗ := {z ∈ H | z∗ � z}.
For each sequence z∗ � z1 � z2 � · · · in Z∗ there is a subsequence zkν = (xkν , tkν ), ν =
1, 2, . . . such that zkν → z̄ = (x̄, t̄) with x̄ ∈ S(x∗), (x̄, t̄) ∈ H . Since for each fixed
h, xk ∈ S(xh) ∀k ≥ h, we have x̄ ∈ S(xh) ∀h, but ∩h S(xh) is a face of S(xk), hence
S(x̄) ⊂ S(xk) ∀k. Also, for every k, since M(zk) ⊂ M(zh) ∀h ≥ k, it follows that if
y ∈ M(zk) then g(xh, y) = g̃(xh) ∀h ≥ k, hence, by continuity, g(x̄, y) = g̃(x̄), i.e.,
y ∈ M(x̄). This means M(zk) ⊂ M(z̄) ∀k, and so any sequence {zk} ⊂ Z∗ as described has
an upper bound z̄ ∈ Z∗. By Zorn Lemma, there exists a maximal element ẑ of the set Z∗,
i.e., a point ẑ = (x̂, t̂) ∈ H such that for every z ∈ H : ẑ � z entails z � ẑ. Equivalently,
there is no z = (x, t) ∈ H such that

S(x) ⊂ S(x̂), M(ẑ) ⊂ M(z), (S(x̂) \ S(x)) ∪ (M(z) \ M(ẑ)) 	= ∅,

so ẑ = (x̂, t̂) is a DH-point of H . Hence, by Lemma 1 x∗ is a DH-point of K .
We now contend that ẑ is an optimal solution. Suppose the contrary, that g0(x̂, 0) :=

f (x̂) − α > 0, so that g̃(x̂) > 0. Let xλ be a point such that x∗ = (1 − λ)xλ + λx̂ . Noting
that x̂ ∈ S(x∗) \ {x∗} we have xλ ∈ S(x∗) for all sufficiently small λ > 0, say λ ∈ (0, λ̄).
For every y ∈ M(z∗) ⊂ M(ẑ) we have g(x∗, y) = 0, g(x̂, y) = g̃(x̂) > 0, but by quas-
iconcavity of g(., y) : 0 ≥ min{g(xλ, y), g(x̂, y)}, hence g(xλ, y) ≤ 0. Furthermore, since
x∗ is an extreme point of K , one cannot have xλ ∈ K for any λ ∈ (0, λ̄), so for each λ there
exists yλ ∈ D′ \ M(z∗) with g(xλ, yλ) > g̃(xλ). By passing to subsequences if necessary,
we can assume that xλ → x∗, yλ → y∗ as λ → 0. Clearly g(x∗, y∗) = g̃(x∗) = 0,
so y∗ ∈ M(z∗) ⊂ M(ẑ). This entails g(x̂, y∗) = g̃(x̂) > 0 = g(x∗, y∗), and hence
g(x̂, yλ) > g(x∗, yλ) for λ > 0 sufficiently small. On the other hand, noting that yλ /∈ M(z∗)
we have g(x∗, yλ) < 0 = g(x∗, y∗) < g(xλ, yλ). So g(x∗, yλ) < min{g(xλ, yλ), g(x̂, yλ)},
conflicting with the quasiconcavity of g(., yλ). Therefore, x̂ is an optimal solution, and since
it is a DH-point, this completes the proof of the theorem. ��

Corollary 4 Under assumption (*), the minimum of g(x) := maxy∈D g(x, y) over C is
achieved at a DH-point.

Proof According to Theorem 3 an optimal solution (x∗, g(x∗)) of the problem

min{t | max
y∈D

g(x, y) ≤ t, x ∈ C}

exists which is a DH-point of the set {(x, t)| maxy∈D g(x, y) ≤ t, x ∈ C}. Then x∗ is an
optimal solution of the problem min{g(x)| x ∈ C} and by Lemma 1, x∗ is a DH-point. ��

Remark 2 In [3] the original result of Du-Hwang is quoted in the following much weaker
form (Theorem 1 in [3]): if every gi (x), i = 1, . . . , m, is a concave continuous function on
R

n , then the minimum of g(x) := maxy∈D g(x, y) over a polytope C ⊂ R
n is achieved at

some point x∗ satisfying the condition:
(DP) there exists a face Z of C such that x∗ ∈ Z and M(x∗) := {y| g(x∗, y) = g(x∗)} is

maximal (w.r.t. inclusion) in the family M(x), x ∈ Z.
It is obvious that a DH-point x∗ always satisfies condition (DP), but the converse is not

true, i.e., a point x∗ satisfying condition (DP) may not be a DH-point. To see this, it suffices
to consider the problem min{g(x)| x ∈ C}, where g(x) is a concave function and C is a
polytope defined by the affine inequalities 〈a j , x〉 ≤ b j , j = 1, . . . , p. In this case |D| = 1,
so M(x) is the same for all x , and any x∗ ∈ riC satisfies condition (DP) (with Z = C) but
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is not a DH-point, because for any boundary point x of C we have M(x) = M(x∗), while
S(x∗) \ S(x) 	= ∅.

Thus, Du-Pardalos’ theorem in [3] is a continuous version of Theorem 1 in [3]) but not
exactly a continuous version of Du-Hwang’s minimax theorem in [2]. In a subsequent work
[4] a slightly different continuous version is formulated (Theorem 11.1.7 in [3]), where,
however, it is not clear what is meant by DH-point when D may be infinite. From the context
the most reasonable interpretation is that (DP) is now replaced by (DP)*:

M(x∗) is maximal over S(x∗), the smallest face of C containing x∗.
Though condition (DP)* is certainly stronger than (DP), again it does not imply that x∗ is

a DH-point in the sense originally introduced in [2] when |D| < +∞. A counter example is
furnished by the problem min{ f (x)| 〈a j , x〉 ≥ b j , j = 1, . . . , m} with a concave objective
function f (x) such that every point in a face Z = {x | 〈a j0 , x〉 = b j0} is an optimal solution.
Here also |D| = 1, M(x) is constant for all x , and every point of Z satisfies (DP)* but only
the extreme points of Z are DH-points. Besides, the proof sketched in [4] for Theorem 11.1.7
does not really work.

5 Conclusion

In this paper we have shown that the DH-property introduced in [2] for optimal solutions of
problem (1) is in fact a special case of a property of the extreme points of a compact set K that
achieve the minimum of a quasiconcave function over K . In the case considered by Du-Hwang
[2] K = {x ∈ C | maxi=1,...,m gi (x) ≤ 0}, where C is a polytope and gi (x), i = 1, . . . , m,
are concave continuous functions. In the general case K = {x ∈ C | maxy∈D gy(x, y) ≤ 0}
where C is an arbitrary compact convex set, and g(x, y), y ∈ D, are quasiconcave functions
in x for every fixed y ∈ D and continuous jointly in (x, y) in the product topology of C × D.

A related open question of interest is whether there exists a DC representation for the
function maxy∈D g(x, y). More specifically, does there exist for each x0 ∈ C a neigh-
borhood W (x0) of x0 together with a finite set I (x0) ⊂ D such that maxy∈D g(x, y) =
maxy∈I (x0) g(x, y) ∀x ∈ I (x0)?
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